Det er et gammelt spørsmål i science fiction-litteraturen, og et som også stilles av fagfolk i ulike sammenhenger. Nylig ble det stilt av VG TV til Knut Jørgen Røed Ødegaard, som har et klart svar:
Her må det ryddes litt opp. Reportasjen gir inntrykk av at vi er nødt til å forlate Jorden innen 7,8 milliarder år, som er det tidspunktet da man antar at Solen eventuelt eser så mye ut at den også sluker Jorda. Men faktum er at tidsfristen er en god del kortere enn som så. Utstrålingen fra Sola har økt langsomt men sikkert i milliarder av år, og mye tyder på at det “allerede” om én milliard år vil føre til at Jorda blir ubeboelig.
Lenge før den tid kan den økte overflatetemperaturen på Jorda ha gjort store deler av landjorda uutholdelig for jevnvarme dyr som oss (vi dør som kjent om kroppstemperaturen overstiger 42 grader). På det tidspunktet vil vi sannsynligvis også ha vært rammet en eller flere masseutdøinger. Den siste halve milliarden år er livet på Jorda blitt rammet av minst fem masseutdøinger av samme voldsomhetsgrad som den som tok livet av dinosaurene for 66 millioner år siden.
Slike hendelser har mange årsaker utover de kosmologiske som nevnes av Røed Ødegaard, som massive vulkanutbrudd og virkninger av kontinentaldrift. Det siste gjør det faktisk mulig å “spå” minst én stor masseutdøing i fremtiden. Dagens kontinentbevegelse tyder på at vi om 250 millioner år vil få et nytt superkontinent, av og til kalt “Pangea Ultima“. Når dagens mange kontinenter blir til ett stort, reduseres kystlinje og kontinentalsokkel sterkt i omfang.
Jorda om 250 millioner år? Kilde: Wikipedia
Det kan utløse et dramatisk fall i artsmangfoldet i havet. Samtidig vil superkontinentet ha et langt mindre variert klima enn de mange øy-kontinentene, noe som vil ramme mangfoldet av liv på land. Det har vært spekulert i om denne hendelsen, som altså kan finne sted når Jorda er en god del varmere enn idag, vil være det som skal til for å dytte gruppen pattedyr over det evolusjonære stupet.
Hvis vi ikke vi blir truffet av en stor asteroide før den tid eller faller som offer for den sjette, menneskeskapte masseutdøingen vi antagelig er på vei inn i nå, da. Poenget mitt er at jeg er enig med Røed Ødegaard i at Jorda på lang sikt ikke er noe blivende sted for arten Homo sapiens, jeg tror bare at en eventuell “flukt” fra kloden bør skje lenge før Sola begynner å sluke planeter.
Hvor vi skal dra?
Mars er en grei mellomstasjon, men ønsker vi å finne en levelig jordlignende planet finnes det ingen andre kandidater i Solsystemet. Da må vi til andre stjerner. I VG-intervjuet nevnes det tre stjerner, og jeg stusser litt over utvalget da ingen av dem egner seg godt som vertskap for fremtidige jordiske kolonister.
Den første stjernen som nevnes er Mizar, en av stjernene i stjernebildet Store Bjørn – bedre kjent som Karlsvogna. Mizar er en komponent i et kvadruppelstjernesystem (altså fire stjerner som kretser rundt hverandre) og hører selv til spektralklasse A2V. Ingen av delene borger for beboelige kloder ved stjernen. Når to eller flere stjerner går rundt hverandre, er sjansene store for at planeter i bane rundt en av stjernene blir påvirket av tyngekraften fra de andre. Det kan føre til at planetene faller inn i en av stjernene eller slynges helt ut av stjernesystemet.
Mizars spektraklassifisering forteller oss at vi har å gjøre med en stjerne som er en god del tyngre og mer lyssterk enn Sola. Paradoksalt nok er det slik at jo tyngre (eller rettere sagt mer massiv) en stjerne er, desto kortere vil den leve. Det er fordi større masse fører til høyere trykk og temperatur i stjernens indre, noe som igjen gjør den varmere og mer lyssterk på overflaten og dermed forbruker mer brennstoff. Å flykte fra Sola til en stjerne som kommer til å leve mye kortere gir selvsagt ingen mening.
Derfor er også valget av Vega som den andre potensielle kandidaten også underlig. Her snakker vi fremdeles om en stjerne at type A (A0V, for å være mer presis), mer enn dobbelt så massiv som Sola og med en forventet levetid på under tidelen av Solas. Vega er ellers kjent for å være omgitt av en skive av støv og partikler, og det er ikke utelukket at det kan finnes unge planeter i bane rundt stjernen. Men særlig velegnet som reserve-Sol er den ikke.
Den tredje stjernen som nevnes er Proxima Centauri. Denne stjernen er vår nærmeste stjerne-nabo i rommet, med en avstand på “bare” 4,24 lysår. Dette gjør den til et interessant potensielt mål for en interstellar romsonde, men hvorfor mennesker skulle ønske å reise dit, slik Ødegaard antyder, skjønner jeg virkelig ikke. Rent fysisk ligger Proxima i den motsatte enden av skalaen i forhold til Mizar og Vega. Den har mye mindre masse enn Sola, noe som betyr at den lyser mye svakere og lever lengre.
Konsepttegning av planet i bane rundt rød dvergstjerne. Kilde: Wikipedia
Ubegripelig mye lengre, faktisk. Levetid for en stjerne av Proximas type (spektralklasse M5) måles i billioner av år, med andre år hundrevis av ganger lengre enn Sola. Det høres bra ut, men også her er det problemer. For det første vil planeter rundt en lyssvak stjerne måtte kretse mye nærmere stjernen for å være levelige. Det øker sannsynligheten for at de har bunden rotasjon, dvs at tyngekraften mellom Proxima og planetene har “låst” planetene slik at de alltid viser samme side mot stjernen, slik Månen alltid viser samme fjes mot oss.
Det i sin tur betyr ekstreme temperaturforskjeller mellom natt og dag, noe som er lite kompatibelt med menneskelig liv. Verre er det at stjerner som Proxima ofte har kraftige utbrudd av dødelig stråling på overflaten, ikke ulike solstormene som Røed Ødegaard nevner som en trussel mot livet på Jorda i VG-innslaget. Slike utbrudd kalles for stjerneflares, og Proxima Centauri er faktisk klassifisert som en “flare-stjerne”. Game over, med andre ord.
Grunnen til at jeg maser om dette er for å understreke at vi ikke bare trenger å finne riktig type planeter om vi skal bosette oss andre steder i galaksen. Det handler også om å finne de riktige stjernene. Stjerner av samme spektralklasse som Sola (klasse G) viser seg å ha en rekke trekk som gjør dem velegnede som vertskap for beboelige planeter: relativt lang levetid, som regel ganske lite variasjon i lysstyrke og ofte høyt metallinnhold, for eksempel.
Det rimelige hadde derfor vært å nevne nærliggende sol-like stjerner som potensielle mål for stjerneskipet i denne reportasjen. Det åpenbare eksempelet ville ha vært Alfa Centauri A, som bare ligger litt lengre unna enn Proxima Centauri. Problemet med denne er at den er en del av et dobbeltstjernesystem, med de følger det kan ha for stabiliteten av eventuelle planeter i bane rundt stjernen. Beregninger tyder på at planeter innenfor “livssonen” til Alfa Centauri A eller kompanjongen Alfa Centauri B ikke her helt utelukket, men det mest realistiske er å sikte mot single, sollignende stjerner.
Wikipedia har laget en god oversikt over slike “solare analoger”, som viser at den nærmeste stjernen som kan sies å være ganske lik Sola, er Epsilon Eridani som ligger 10,5 lysår unna. Rundt denne stjernen er det observert en støvring som kan tyde på at planeter er i ferd med å dannes rundt den. Det stemmer godt med andre observasjoner som tyder på at stjernen er ung, som varierende lysstyrke og kraftig magnetisk aktivitet og stjerneutbrudd. Ikke et egnet mål, med andre ord.
Den nærmeste kjente “soltvillingen”, definert som en stjerne med en overflatetemperatur som ikke avviker mer enn 50 grader fra Solas (mellom 5720 og 5830 grader på Kelvin-skalaen), et metallinnhold innen 12% av Solas (metall trengs for å danne jordlignende planeter), ingen annen stjerne i bane rundt seg og en alder som ikke avviker mer enn en milliard år fra Solas (altså mellom 3,5 og 5,5 milliarder år gammel), har katalognavnet 18 Scorpii og ligger 45 lysår fra oss. 18 Scorpii står også i den såkalte HabCat-katalogen over stjerner som fortjener nærmere studier i letingen etter liv i universet.
Hvordan drar vi dit?
“Man planlegger da å sende sirka 200 mennesker, både barn, ungdommer og voksne, om mellom 100 og 200 år” sies det i reportasjen. Jeg er usikker på hva det henvises til her. Det jeg kan si er at det ikke finnes noe konkret prosjekt igangsatt av noen seriøs statlig eller privat aktør, som har denne målsetningen. Men som skrevet her er det ikke utenkelig at vi en dag kan bygge romskip som kan fly til stjernene. De fysiske prinsippene er kjente og teknologien virker oppnåelig med en rimelig grad av ekstrapolering fra dagens.
Men det er altså en himla stor forskjell på å sende et stjerneskip til Alfa Centauri og til 18 Scorpii. Mens førstnevnte kan nås innen et menneskes levetid med en realistisk skipshastighet på 10-15% av lyshastigheten, vil vår nærmeste sol-tvilling ligge fire hundre år unna med samme reisefart. Det fordrer at man bygger et såkalt generasjonsskip, et flygende minisamfunn der generasjoner kan vokse opp, leve og dø underveis.
Tolv-tretten generasjoner kreves for å nå 18 Scorpii med et slikt skip. Den neste soltvillingen på listen ligger dobbelt så langt unna, og deretter tar det helt av. For meg fremstår dette som en håpløst ineffektiv og kostbar måte å spre Homo sapiens ut i universet på. Om romskip der folk lever innesperret i 10-20 generasjoner i det hele tatt overlever fram til målet, kan de neppe regne med å komme til dekket bord. Kanskje kreves det århundrer med terraforming eller tilpasning til fremmed liv før bosetning er mulig.
Hovedproblemet med Røed Ødegaards resonnement her er det store spriket i tid. For å unngå noe som ifølge ham kan skje om 7,8 milliarder år, må det handles innen 100-200 år. Det mest realistiske backup-scenariet innenfor et slikt tidsrom er det Elon Musk har foreslått, som er å skape en avlegger av menneskeheten på Mars. Det vil faktisk beskytte vår kulturarv mot de aller fleste trusler, både naturlige og menneskeskapte, i potensielt hundrevis av millioner av år.
Gir vi oss selv tusen år istedenfor hundre til å utvikle teknologi, er det også mulig å tenke seg bedre reisemåter til stjernene enn et generasjonsskip. Kanskje vi i 3014 kan bygge så raske romskip at astronautene nyter godt av relativistiske tidsforskyvningseffekter: Ved 99% av lyshastigheten vil en ferd til 18 Scorpii ta rundt 6 år for astronautene ombord i skipet (mens skipet fremdeles vil bruke litt over 45 år sett fra Jorda). Eller har man har “tunneller” gjennom tidrommet slik at interstellare ferder bare tar et øyeblikk, som i “Star Wars”-filmene.
Tusen år gir også rom for helt andre løsninger, som den mye omtalte teknologiske singulariteten. Det er ideen om et samfunn hvor datamaskiner har oppnådd virkelig kunstig intelligens og hele menneskehjerner kan lastes opp til maskiner. Vi snakker om en verden der evig liv er en praktisk realitet og romferder handler om å overføre bytes ved lysets hastighet. Eller kanskje blir det ikke mennesker (digitale eller analoge) som koloniserer galaksen, men maskinene våre.
Vi er med rette stolte av å ha sendt mennesker til Månen, men resten av Solsystemet er blitt utforsket på våre vegne av roboter. Senest i sommer da en robot ga oss de første nærbildene av en klode som neppe blir beskuet på nært hold av et menneske det neste hundråret. Det er roboter som har landet på Venus og Titan, fløyet inn i Jupiters atmosfære og som nå beveger seg rundt på Mars slik vi en dag drømmer om at mennesker skal gjøre.
Om tusen år kan dagens robot-teknologi ha smeltet sammen med kunstig intelligens, nanoteknologi og genteknologi og gitt oss romfarende von Neumann-maskiner. Her snakker vi om roboter som lager kopier av seg selv av tilgjengelig råmateriale slik levende organismer idag, og som i tillegg kan gjøre mye mer: Fly til soltvillinger med planeter, terraforme passende planeter, “så” dem med jordiske livsformer før de bygger kopier av seg selv som sendes til nærliggende soltvillinger.
NASA-konsept fra 1979: Selvbyggende robot-fabrikk på Månen. Kilde: NASA
Slike selvreplikerende robot-romskip er spesielt interessante fordi de formerer og utbrer seg eksponensielt på egen hånd, akkurat som levende organismer. Én robot blir til to som blir til fire som blir til osv… Romskipene er ikke begrenset av menneskets livslengde og har derfor ikke hastverk. Selv med en reisetid på årtusener fra stjerne til stjerne kan de potensielt fylle alle beboelige planeter i galaksen med liv på forbløffende kort tid – i størrelsesorden noen titalls millioner år.
Jeg sier ikke at det er slik det med sikkerhet vil skje. Jeg sier bare at som så ofte når vi snakker om fremtiden er det største problemet med resonnementet til Røed Ødegaard det som i sin tid ble påpekt av forfatteren Arthur C. Clarke: Mangel på fantasi.
23/08/2015 at 19:33
Et par spørsmål:
1) Det er vel ikke en universell lov at det skal eksistere mennesker?
2) Hvis disse endringene skjer over lang nok tid, rekker vi kanskje å utvikle egenskaper som gjør oss i stand til å overleve allikevel?
3) Kan vi ikke bare utvikle infinite improbability drive før som sist?
23/08/2015 at 20:03
@Kjell:
1. Nei, det er selvsagt ingen universell lov. Dette er i høyeste grad et subjektivt standpunkt: Som menneske mener jeg at mennesker har tilført universet noe tidligere arter på Jorda ikke har og senere arter kanskje ikke vil gjøre, og derfor syns jeg det er en god idé å sørge for menneskehetens fortsatte eksistens. Men bevares, universet klarer seg sikkert helt fint uten oss. 🙂
2. Det kan godt tenkes at vi klarer å tilpasse oss høyere temperatur over tid. I det hele tatt må vi jo forvente ganske svære endringer i arten Homo over 300 millioner år eller mer, hvis vi mot formodning skulle overleve så lenge. Men før eller siden – kanskje så tidlig som om en milliard år – blir temperaturen på Jorda så høy at vann fordamper. Da er nok løpet kjørt for alle komplekse organismer.
3. Eller EmDrive, som vi kaller den nå til dags… 😉