I’m just trying to think about the future and not be sad: Elon Musk om fremtid og teknologi

Hvis du er interessert i teknologi og samfunn i vår tid er det umulig å komme utenom Elon Musk. Han er vår tid Thomas Edison: En usedvanlig kreativ og ambisiøs oppfinner og forretningsmann som klart og tydelig setter sin virksomhet i en større samfunnsmessig kontekst. Elon Musk forsøker å redde verden (selv om han prøver å late som om han ikke gjør det).

I et svært interessant intervju gjort av Ted-konferansen snakker han i nærmere detalj om det mye omtalte tunnelprosjektet sitt, som ikke overraskende viser seg å være mer interessant enn man tror første gang man hører om det. Elon Musk får det til å høres ut som om også tunnelbransjen er moden for disruptiv innovasjon (å kutte borekostnader med en faktor 10 burde definitivt interessere nordmenn!)

Selvsagt snakker han også om Tesla og Hyperloop, og også her setter han det hele i en større sammenheng. Men ikke overraskende er det den siste delen av intervjuet, som fokuserer på romprogrammet til Musk (ja, for det er det vi bør kalle det nå – et ambisiøst romprogram drevet fram av en enkelt person) som interesserer meg mest.

Jeg har tidligere omtalt Musks planer for et interplanetarisk transportsystem i denne bloggen, og her utdyper han noen av poengene fra fjorårets lansering og understreker at dette er noe man jobber med fortløpende. Musk nevner “interne, aggressive planer” for å få sendt det første interplanetariske romskipet opp i løpet av bare et tiår.

Helt på slutten av samtalen kommer Musk med noen svært interessante betraktninger rundt fremtiden. Her avslører ingeniøren og entreprenøren at han har forstått sentrale trekk ved dagens fremtidstenkning, som at det ikke handler om å “se i glasskula” og tenke seg hvordan fremtiden (i entall) vil bli men snarere om å omfavne ideen om mange potensielle fremtider.

I look at the future from the standpoint of probabilities. It’s like a branching stream of probabilities, and there are actions that we can take that affect those probabilities or that accelerate one thing or slow down another thing. I may introduce something new to the probability stream.

Den samme prinsipptenkningen gjør Elon Musk utrygg på at hans mest grandiose prosjekt – å forvandle menneskeheten til en multiplanetarisk art – vil lykkes. Han påpeker at bemannet romfart ikke er en teknologi som uunngåelig vil komme. I motsetning til fornybar energiproduksjon, som dømt til å erstatte fossile ressurser om vi skal leve lenge på denne planeten, er romfart noe man må arbeide for om man vil unngå at prosjektet henfaller:

People are mistaken when they think that technology just automatically improves. It does not automatically improve. It only improves if a lot of people work very hard to make it better, and actually it will, I think, by itself degrade, actually.

Musk nevner både egypterne, romerne og det amerikanske romprogrammet  (fra Apollo til dagens ikke-eksisterende kapasitet) som eksempler på en slik sic transit gloria mundi-prosess. Her viser han seg som mer sammensatt og reflektert enn han ofte  fremstår som i offentligheten. Og hvis noen skulle lure på hva Musks egentlige motivasjon er, så forteller han også det:

But I want to be clear. I’m not trying to be anyone’s savior. That is not the — I’m just trying to think about the future and not be sad.

Refleksjoner rundt Elon Musks Mars-tale

Jeg har skrevet og snakket mye om mulighetene for å reise til Mars, og har ikke lagt skjul på min begeistring for Elon Musk og SpaceX‘ engasjement i saken. Musk har lenge snakket om at hans ambisjon er å gjøre oss til en “space-faring civilization” og “a multi-planet species”, og i går fikk han sjansen til å gå i større detalj. I et timelangt foredrag gikk han gjennom hovedtrekkene i sin plan for å kolonisere Mars og resten av solsystemet.

Technology doesn’t automatically improve. It only improves if a lot of really strong engineering talent is applied to the problem that it improves. There are many examples in history where a civilization has reached a certain technology level and then fallen below that.

Etter å ha gått gjennom de praktiske utfordringene knyttet til kolonisering av rommet (og argumentert godt for å hoppe over Månen), kommer Musk til selve kjernen i argumentet, som er at kolonisering av Mars bare blir mulig om kostnadene ved å reise dit reduseres med mer enn fire størrelsesordener – fra rundt 10 milliarder dollar Apollo-astronaut til rundt 200 000 dollar. Musk tror dette er mulig med følgende strategi:

  • Full gjenbrukbarhet av rakettsystemet
  • Påfyll av drivstoff i lav jordbane
  • Drivstoffproduksjon på Mars
  • Velge riktig drivstoff

Gjenbrukbarheten er noe selskapet arbeider med akkurat nå, og langt på vei har demonstrert muligheten av. SpaceX har gjennomført en rekke vellykkede landinger med det gjenbrukbare førstetrinnet til bæreraketten Falcon 9, og det burde ikke være noe i veien for å skalere opp denne teknologien til bæreraketter som er store nok til å frakte mennesker til Mars. Og vi snakker virkelig store raketter: mer enn tre ganger løftekapasiteten til Saturn V, måneraketten som fremdeles er den kraftigste som har lettet fra Jorda til nå.

screenshot-2016-09-28-at-14-03-06

Det betyr at opptil hundre passasjerer og hundrevis av tonn med nyttelast kan fraktes til Mars med én rakett, langt hinsides noe annet Marsferd-konsept jeg har sett før. SpaceX utvikler en ny og svært effektiv rakettmotor, Raptor, som de mener vil kunne gi reisetider til Mars på ned mot 80 dager når planetene står optimalt i forhold til hverandre. Det gir mange gevinster. Jo kortere tid man tilbringer i vektløshet og utsatt for kosmisk stråling og solutbrudd, desto bedre.

screenshot-2016-09-28-at-14-11-16

Påfyll av drivstoff i jordbane har også vært demonstrert i praksis, og måten Musk ser for seg at det gjøres på er ganske innovativ. Romskipet med Mars-astronautene skytes opp med tomme drivstofftanker, og går i ventebane rundt Jorda mens førstetrinnet returnerer til Jorda. Så skytes det opp på nytt med drivstoffet til Mars-ferden ombord, og overfører det til Mars-romskipet. Slik kan kostnadene kuttes med en faktor fem, mener Musk.

Mars-entusiaster som Robert Zubrin har lenge påpekt at det er mulig å lage drivstoff til raketter av vann og karbondioksid, som det finnes rikelig av på Mars. Ved å produsere drivstoffet til Jord-returen på Mars, reduseres kostnadene kraftig. I det hele tatt: Alt man slipper å fraktes opp fra Jorda og hele den lange veien til Mars, gir massive kostnadsbesparelser.

screenshot-2016-09-28-at-13-49-32

Å velge riktig brennstoff er også avgjørende. Diagrammet over viser hvorfor Musk og SpaceX er kommet til at metan er det beste drivstoffet (oksygen er den andre komponenten i alle eksemplene, fordi det ikke er oksygen i rommet). Metan og oksygen kan produseres på Mars etter kjente kjemiske prinsipper, egner seg godt for store romskip, er billig og relativt stabilt og trygt.

Med disse fire prinsippene spikret presenterer Musk så det interplanetariske transportsystemet:

screenshot-2016-09-28-at-13-53-05

Musk mener at modellen over gjør det mulig å transportere en million mennesker til Mars innen 100 år, til kostnader som er overkommelige for storparten av middelklassen i det rike nord (selg huset ditt, så har du råd til å emigrere). Men han mener også at fleksibiliteten åpner for nye muligheter. For eksempel kan bæreraketten frakte mer enn 300 tonn gods eller hundrevis av passasjerer til et hvilket som helst sted på Jorda på 25 – 45 minutter. Det er ikke vanskelig å se for seg militære bruksområder for dette.

screenshot-2016-09-28-at-15-03-47

Har man først kommet seg til Mars, koster det lite energimessig sett å fly videre ut i Solsystemet. Derfor ser Musk for seg at dette kan bli starten på en storstilt kolonisering av alle beboelige legemer. Råstoffet til brennstoff og oksygen finnes på måner i bane rundt alle de ytre planetene og Pluto, og det er fullt mulig å opprette robotiserte brennstoffdepoter som vil gjøre det mulig å “planethoppe” eller “månehoppe” til en hvilken som helst klode i bane rundt Sola.

Det vi med andre ord har fått presentert er den første virkelig gjennomtenkte, og komplette planen for kolonisering av Mars og resten av Solsystemet (foredraget inneholder langt flere tekniske detaljer enn jeg har hatt plass til her, anbefaler å se det). Spørsmålet blir hvor realistisk forslaget er. Rent teknisk tror jeg ikke at det kan herske stor tvil: Dette lar seg gjøre. Det er intet i Musks foredrag som ligger utenfor det vi rent teknisk kan få til idag.

Som så ofte før i teknologihistorien er ligger utfordringene på det menneskelige planet. For det første må dette finansieres. Og selv om kostnadene kuttes drastisk sammenlignet med konvensjonell romfart, er det fremdeles milliarder av dollar som må investeres i den nye bæreraketten og det interplanetariske romskipet. All erfaring tilsier at den endelige prislappen på slik teknologi blir betydelig høyere enn de første optimistiske anslagene.

Elon Musk påpeker selv hvor viktig NASA er som partner. Og her vil han støte på problemer. NASA har sitt eget Mars-prosjekt på gang, og NASAs direktør ga nylig uttrykk for at han ikke var særlig begeistret for private planer om kjemperaketter som ville konkurrere direkte med NASAs eget Space Launch System. Nå vil mange (jeg inklusive) mene at NASA har liten troverdighet i spørsmål som angår bemannet utforskning av Mars, men det er nå de som er nøkkelen til offentlig romfartsstøtte i USA. Og USA er fremdeles størst på dette feltet.

Den andre store utfordringen vil bli sosial. Musk har gitt uttrykk for at han ikke tror Mars kan koloniseres uten at det koster liv. Basert på det som ble presentert, må vi anta at vi før eller siden vil oppleve at hundre eller flere liv går tapt i én romulykke. Vil et samfunn med aversjon mot risiko tolerere det? Veien fra global nerdehelt til kynisk kapitalistskurk som gladelig ofrer liv på profittens alter er kort i de virale medienes tidsalder, for å si det slik.

screenshot-2016-09-28-at-14-53-26

Elon Musk har spent buen høyt. Han sier i foredraget sitt at planen er å sende et romskip til Mars hver gang planetene er plassert nær hverandre, det vil si ca annethvert år fra 2018. Den store bæreraketten skal utvikles og testes frem mot 2025, og deretter er planen at det skal sendes folk regelmessig til Mars. Nei, jeg tror ikke dette tidsskjemaet vil holde. Men når det er sagt er jeg likevel mer optimistisk enn på lenge.

For igjen: Dette er virkelig den første gjennomførbare planen for kolonisering av rommet som hittil er lansert. Fra nå av kan vi som mener at menneskeheten bør bli multiplanetarisk peke på Musk-planen og si: Det er et spørsmål om vilje og penger, ikke teknologi. Og ingen kan betvile mannens personlige engasjement i saken:

 

The main reason I am personally accumulating assets is in order to fund this. I really don’t have any other motivation for accumulating assets except to be able to make the biggest contribution I can to making life multiplanetary.

Bør vi flykte til en annen stjerne?

Det er et gammelt spørsmål i science fiction-litteraturen, og et som også stilles av fagfolk i ulike sammenhenger. Nylig ble det stilt av VG TV til Knut Jørgen Røed Ødegaard, som har et klart svar:

Her må det ryddes litt opp. Reportasjen gir inntrykk av at vi er nødt til å forlate Jorden innen 7,8 milliarder år, som er det tidspunktet da man antar at Solen eventuelt eser så mye ut at den også sluker Jorda. Men faktum er at tidsfristen er en god del kortere enn som så. Utstrålingen fra Sola har økt langsomt men sikkert i milliarder av år, og mye tyder på at det “allerede” om én milliard år vil føre til at Jorda blir ubeboelig.

Lenge før den tid kan den økte overflatetemperaturen på Jorda ha gjort store deler av landjorda uutholdelig for jevnvarme dyr som oss (vi dør som kjent om kroppstemperaturen overstiger 42 grader). På det tidspunktet vil vi sannsynligvis også ha vært rammet en eller flere masseutdøinger. Den siste halve milliarden år er livet på Jorda blitt rammet av minst fem masseutdøinger av samme voldsomhetsgrad som den som tok livet av dinosaurene for 66 millioner år siden.

Slike hendelser har mange årsaker utover de kosmologiske som nevnes av Røed Ødegaard, som massive vulkanutbrudd og virkninger av kontinentaldrift. Det siste gjør det faktisk mulig å “spå” minst én stor masseutdøing i fremtiden. Dagens kontinentbevegelse tyder på at vi om 250 millioner år vil få et nytt superkontinent, av og til kalt “Pangea Ultima“. Når dagens mange kontinenter blir til ett stort, reduseres kystlinje og kontinentalsokkel sterkt i omfang.

Pangea-ultima

Jorda om 250 millioner år? Kilde: Wikipedia

Det kan utløse et dramatisk fall i artsmangfoldet i havet. Samtidig vil superkontinentet ha et langt mindre variert klima enn de mange øy-kontinentene, noe som vil ramme mangfoldet av liv på land. Det har vært spekulert i om denne hendelsen, som altså kan finne sted når Jorda er en god del varmere enn idag, vil være det som skal til for å dytte gruppen pattedyr over det evolusjonære stupet.

Hvis vi ikke vi blir truffet av en stor asteroide før den tid eller faller som offer for den sjette, menneskeskapte masseutdøingen vi antagelig er på vei inn i nå, da. Poenget mitt er at jeg er enig med Røed Ødegaard i at Jorda på lang sikt ikke er noe blivende sted for arten Homo sapiens, jeg tror bare at en eventuell “flukt” fra kloden bør skje lenge før Sola begynner å sluke planeter.

Hvor vi skal dra?
Mars er en grei mellomstasjon, men ønsker vi å finne en levelig jordlignende planet finnes det ingen andre kandidater i Solsystemet. Da må vi til andre stjerner. I VG-intervjuet nevnes det tre stjerner, og jeg stusser litt over utvalget da ingen av dem egner seg godt som vertskap for fremtidige jordiske kolonister.

Den første stjernen som nevnes er Mizar, en av stjernene i stjernebildet Store Bjørn – bedre kjent som Karlsvogna. Mizar er en komponent i et kvadruppelstjernesystem (altså fire stjerner som kretser rundt hverandre) og hører selv til spektralklasse A2V. Ingen av delene borger for beboelige kloder ved stjernen. Når to eller flere stjerner går rundt hverandre, er sjansene store for at planeter i bane rundt en av stjernene blir påvirket av tyngekraften fra de andre. Det kan føre til at planetene faller inn i en av stjernene eller slynges helt ut av stjernesystemet.

Mizars spektraklassifisering forteller oss at vi har å gjøre med en stjerne som er en god del tyngre og mer lyssterk enn Sola. Paradoksalt nok er det slik at jo tyngre (eller rettere sagt mer massiv) en stjerne er, desto kortere vil den leve. Det er fordi større masse fører til høyere trykk og temperatur i stjernens indre, noe som igjen gjør den varmere og mer lyssterk på overflaten og dermed forbruker mer brennstoff. Å flykte fra Sola til en stjerne som kommer til å leve mye kortere gir selvsagt ingen mening.

Derfor er også valget av Vega som den andre potensielle kandidaten også underlig. Her snakker vi fremdeles om en stjerne at type A (A0V, for å være mer presis), mer enn dobbelt så massiv som Sola og med en forventet levetid på under tidelen av Solas. Vega er ellers kjent for å være omgitt av en skive av støv og partikler, og det er ikke utelukket at det kan finnes unge planeter i bane rundt stjernen. Men særlig velegnet som reserve-Sol er den ikke.

Den tredje stjernen som nevnes er Proxima Centauri. Denne stjernen er vår nærmeste stjerne-nabo i rommet, med en avstand på “bare” 4,24 lysår. Dette gjør den til et interessant potensielt mål for en interstellar romsonde, men hvorfor mennesker skulle ønske å reise dit, slik Ødegaard antyder, skjønner jeg virkelig ikke. Rent fysisk ligger Proxima i den motsatte enden av skalaen i forhold til Mizar og Vega. Den har mye mindre masse enn Sola, noe som betyr at den lyser mye svakere og lever lengre.

NASA-RedDwarfPlanet-ArtistConception-20130728

Konsepttegning av planet i bane rundt rød dvergstjerne. Kilde: Wikipedia

Ubegripelig mye lengre, faktisk. Levetid for en stjerne av Proximas type (spektralklasse M5) måles i billioner av år, med andre år hundrevis av ganger lengre enn Sola. Det høres bra ut, men også her er det problemer. For det første vil planeter rundt en lyssvak stjerne måtte kretse mye nærmere stjernen for å være levelige. Det øker sannsynligheten for at de har bunden rotasjon, dvs at tyngekraften mellom Proxima og planetene har “låst” planetene slik at de alltid viser samme side mot stjernen, slik Månen alltid viser samme fjes mot oss.

Det i sin tur betyr ekstreme temperaturforskjeller mellom natt og dag, noe som er lite kompatibelt med menneskelig liv. Verre er det at stjerner som Proxima ofte har kraftige utbrudd av dødelig stråling på overflaten, ikke ulike solstormene som Røed Ødegaard nevner som en trussel mot livet på Jorda i VG-innslaget. Slike utbrudd kalles for stjerneflares, og Proxima Centauri er faktisk klassifisert som en “flare-stjerne”. Game over, med andre ord.

Grunnen til at jeg maser om dette er for å understreke at vi ikke bare trenger å finne riktig type planeter om vi skal bosette oss andre steder i galaksen. Det handler også om å finne de riktige stjernene. Stjerner av samme spektralklasse som Sola (klasse G) viser seg å ha en rekke trekk som gjør dem velegnede som vertskap for beboelige planeter: relativt lang levetid, som regel ganske lite variasjon i lysstyrke og ofte høyt metallinnhold, for eksempel.

Det rimelige hadde derfor vært å nevne nærliggende sol-like stjerner som potensielle mål for stjerneskipet i denne reportasjen. Det åpenbare eksempelet ville ha vært Alfa Centauri A, som bare ligger litt lengre unna enn Proxima Centauri. Problemet med denne er at den er en del av et dobbeltstjernesystem, med de følger det kan ha for stabiliteten av eventuelle planeter i bane rundt stjernen. Beregninger tyder på at planeter innenfor “livssonen” til Alfa Centauri A eller kompanjongen Alfa Centauri B ikke her helt utelukket, men det mest realistiske er å sikte mot single, sollignende stjerner.

Wikipedia har laget en god oversikt over slike “solare analoger”, som viser at den nærmeste stjernen som kan sies å være ganske lik Sola, er Epsilon Eridani som ligger 10,5 lysår unna. Rundt denne stjernen er det observert en støvring som kan tyde på at planeter er i ferd med å dannes rundt den. Det stemmer godt med andre observasjoner som tyder på at stjernen er ung, som varierende lysstyrke og kraftig magnetisk aktivitet og stjerneutbrudd. Ikke et egnet mål, med andre ord.

Den nærmeste kjente “soltvillingen”, definert som en stjerne med en overflatetemperatur som ikke avviker mer enn 50 grader fra Solas (mellom 5720 og 5830 grader på Kelvin-skalaen), et metallinnhold innen 12% av Solas (metall trengs for å danne jordlignende planeter), ingen annen stjerne i bane rundt seg og en alder som ikke avviker mer enn en milliard år fra Solas (altså mellom 3,5 og 5,5 milliarder år gammel), har katalognavnet 18 Scorpii og ligger 45 lysår fra oss. 18 Scorpii står også i den såkalte HabCat-katalogen over stjerner som fortjener nærmere studier i letingen etter liv i universet.

Hvordan drar vi dit?
“Man planlegger da å sende sirka 200 mennesker, både barn, ungdommer og voksne, om mellom 100 og 200 år” sies det i reportasjen. Jeg er usikker på hva det henvises til her. Det jeg kan si er at det ikke finnes noe konkret prosjekt igangsatt av noen seriøs statlig eller privat aktør, som har denne målsetningen. Men som skrevet her er det ikke utenkelig at vi en dag kan bygge romskip som kan fly til stjernene. De fysiske prinsippene er kjente og teknologien virker oppnåelig med en rimelig grad av ekstrapolering fra dagens.

Men det er altså en himla stor forskjell på å sende et stjerneskip til Alfa Centauri og til 18 Scorpii. Mens førstnevnte kan nås innen et menneskes levetid med en realistisk skipshastighet på 10-15% av lyshastigheten, vil vår nærmeste sol-tvilling ligge fire hundre år unna med samme reisefart. Det fordrer at man bygger et såkalt generasjonsskip, et flygende minisamfunn der generasjoner kan vokse opp, leve og dø underveis.

Tolv-tretten generasjoner kreves for å nå 18 Scorpii med et slikt skip. Den neste soltvillingen på listen ligger dobbelt så langt unna, og deretter tar det helt av. For meg fremstår dette som en håpløst ineffektiv og kostbar måte å spre Homo sapiens ut i universet på. Om romskip der folk lever innesperret i 10-20 generasjoner i det hele tatt overlever fram til målet, kan de neppe regne med å komme til dekket bord. Kanskje kreves det århundrer med terraforming eller tilpasning til fremmed liv før bosetning er mulig.

Hovedproblemet med Røed Ødegaards resonnement her er det store spriket i tid. For å unngå noe som ifølge ham kan skje om 7,8 milliarder år, må det handles innen 100-200 år. Det mest realistiske backup-scenariet innenfor et slikt tidsrom er det Elon Musk har foreslått, som er å skape en avlegger av menneskeheten på Mars. Det vil faktisk beskytte vår kulturarv mot de aller fleste trusler, både naturlige og menneskeskapte, i potensielt hundrevis av millioner av år.

Gir vi oss selv tusen år istedenfor hundre til å utvikle teknologi, er det også mulig å tenke seg bedre reisemåter til stjernene enn et generasjonsskip. Kanskje vi i 3014 kan bygge så raske romskip at astronautene nyter godt av relativistiske tidsforskyvningseffekter: Ved 99% av lyshastigheten vil en ferd til 18 Scorpii ta rundt 6 år for astronautene ombord i skipet (mens skipet fremdeles vil bruke litt over 45 år sett fra Jorda). Eller har man har “tunneller” gjennom tidrommet slik at interstellare ferder bare tar et øyeblikk, som i “Star Wars”-filmene.

Tusen år gir også rom for helt andre løsninger, som den mye omtalte teknologiske singulariteten. Det er ideen om et samfunn hvor datamaskiner har oppnådd virkelig kunstig intelligens og hele menneskehjerner kan lastes opp til maskiner. Vi snakker om en verden der evig liv er en praktisk realitet og romferder handler om å overføre bytes ved lysets hastighet. Eller kanskje blir det ikke mennesker (digitale eller analoge) som koloniserer galaksen, men maskinene våre.

Vi er med rette stolte av å ha sendt mennesker til Månen, men resten av Solsystemet er blitt utforsket på våre vegne av roboter. Senest i sommer da en robot ga oss de første nærbildene av en klode som neppe blir beskuet på nært hold av et menneske det neste hundråret. Det er roboter som har landet på Venus og Titan, fløyet inn i Jupiters atmosfære og som nå beveger seg rundt på Mars slik vi en dag drømmer om at mennesker skal gjøre.

Om tusen år kan dagens robot-teknologi ha smeltet sammen med kunstig intelligens, nanoteknologi og genteknologi og gitt oss romfarende von Neumann-maskiner. Her snakker vi om roboter som lager kopier av seg selv av tilgjengelig råmateriale slik levende organismer idag, og som i tillegg kan gjøre mye mer: Fly til soltvillinger med planeter, terraforme passende planeter, “så” dem med jordiske livsformer før de bygger kopier av seg selv som sendes til nærliggende soltvillinger.

Advanced_Automation_for_Space_Missions_figure_5-19

NASA-konsept fra 1979: Selvbyggende robot-fabrikk på Månen. Kilde: NASA

Slike selvreplikerende robot-romskip er spesielt interessante fordi de formerer og utbrer seg eksponensielt på egen hånd, akkurat som levende organismer. Én robot blir til to som blir til fire som blir til osv… Romskipene er ikke begrenset av menneskets livslengde og har derfor ikke hastverk. Selv med en reisetid på årtusener fra stjerne til stjerne kan de potensielt fylle alle beboelige planeter i galaksen med liv på forbløffende kort tid – i størrelsesorden noen titalls millioner år.

Jeg sier ikke at det er slik det med sikkerhet vil skje. Jeg sier bare at som så ofte når vi snakker om fremtiden er det største problemet med resonnementet til Røed Ødegaard det som i sin tid ble påpekt av forfatteren Arthur C. Clarke: Mangel på fantasi.

 

 

 

 

Kunne man ha reddet mannskapet på “Columbia” – og NASAs rykte?

Ars Technica, stadig en av de mest interessante tech-bloggene der ute, publiserer en interessant sak om hvorvidt ulykken med romfergen Columbia kunne ha vært unngått. Utgangspunktet for artikkelen er et vedlegg til granskingskommisjonens rapport fra 2003, kalt STS-107 In-Flight Options Assessment, der kommisjonen på oppdrag av NASA vurderer muligheten for at Columbias mannskap kunne ha vært reddet.

 

shuttle-breakup1

Fragmenter av Columbia over USA 1. februar 2003

En rask rekapitulering for eventuelle ikke-romnerder: Romfergen Columbia gikk i oppløsning under ferden tilbake til Jorda den  1. februar 2003, med den følge at hele mannskapet på sju omkom. I ettertid ble det fastslått at årsaken til ulykken var et hull i forkant av fergens venstre vinge. Under gjeninntreden fra rommet dannes det et ekstremt varmt lag av luft rundt romfergen, og det var slik gass som trengte inn i vingen gjennom hullet og ødela den innenfra.

Hullet oppsto noen sekunder etter oppskytning to uker tidligere, da en bit isolasjonsmateriale fra den store brennstofftanken som satt under buken på romfergen, løsnet og traff vingen med voldsom kraft. Dagen etter oppskytningen, 17. januar 2003, ble hendelsen oppdaget på en av videoene som NASA rutinemessig tok av romfergeoppskytninger. Bildene var imidlertid for dårlige til å fastslå skadeomfanget, og NASA besluttet til at man ikke skulle gjøre nærmere undersøkelser.

I ettertid vet vi at det hadde vært mulig å ta høyoppløselige bilder med sivilt eller militært utstyr (f.eks. en spionsatellitt), for så å sende astronauter fra Columbia ut på romvandring for å undersøke skaden man uten tvil ville ha oppdaget. NASAs forsvarte sin avgjørelse blant annet med at det uansett ikke var noe vi hadde kunnet gjøre for astronautene.

Den internasjonale romstasjonen hadde plass nok, men gikk i en bane som var fysisk umulig for Columbia å nå. Russernes gamle arbeidshest, Sojuz-kapselen, har kun plass til to passasjerer og var dermed uaktuell. Skulle noen redde Columbias mannskap, måtte det bli amerikanerne selv. I normale fall krevde romfergeferder måneder (i noen tilfelle år) med planlegging og trening av mannskapet før man monterer raketten på oppskytningsplattformen.

Det var tid NASA mente at man rett og slett ikke hadde i 2003. Romfergen var ikke bygd for lange ferder, og Columbia var kun utstyrt med brennstoff, CO2-filtre og andre livsnødvendigheter til et opphold på noen uker i rommet. Om man reduserte strømforbruket og den fysiske aktiviteten til et minimum, ville det ha vært mulig å drøye oppholdet til en måned. Dødlinjen, som i dette tilfellet faktisk ville være det, var 15. februar 2003.

I verste fall kunne man ved å avdekke skaden ha dømt mannskapet til å tilbringe sine siste uker i bane rundt Jorda, svevende i kulde og mørke, med et minimum av kontakt med Jorda, et stadig økende ubehag som følge av CO2-forgiftning og vissheten om at en død i full offentlighet var uunngåelig. Av og til gir begrepet “lykkelig uvitende” konkret mening…

Men likevel….
Dette har vært lenge vært et svært utbredt synspunkt i romfartskretser, og det er et jeg også har delt. Men i Ars Technica peker forfatter Lee Hutchinson, som tidligere jobbet for NASA-kontraktør Boeing, at det faktisk fantes et håp om redning. Riktignok bare et ørlite glimt, men dog nok til at NASA, om man hadde valgt å ta sjansen, kunne ha gjennomført århundrets mest spektakulære redningsaksjon.

Håpet lå i det ganske sjeldne sammentreff at en annen romferge, Atlantis, var i ferd med å klargjøres til oppskytning mens Columbia ennå var i bane. Om NASA hadde bestemt seg for å ta bilder av Columbia samme dag som problemet ble oppdaget, kunne en romvandring for å undersøke skaden på vingen ha funnet sted på ferdens fjerde dag (19. januar). Det i sin tur ville antagelig ha tvunget NASA til å forsøke å redde mannskapet.

I vedlegget til granskingsrapporten presenteres en røff tidsplan for klargjøring av Atlantis på bare uker. Det ville kreve arbeid døgnet rundt fra alle involverte, improvisasjon (ferdsprofilen til Atlantis var allerede matet inn i datamaskinen, og måtte ha blitt skrevet om for å tilpasses den nye ferden) og ikke minst en god porsjon flaks. Før en romferge kan ta av må den gjennom en lang rekke tekniske prøver, og om Atlantis strøk til bare én av ferdskritisk test ville hele ferden skrinlegges.

Man ville også ha måttet sette sammen et nytt mannskap i huj og hast. NASA ville antagelig ha gått for fire veteraner med lang erfaring med romvandringer. De ville ha ekstremt kort tid til å forberede seg på ferden, og de to astronautene som ville ha fått hovedansvaret for romvandringene måtte ha tilbragt all sin våkne tid i NASAs enorme treningsbasseng.

For at to romskip skal kunne møtes i rommet må banene stemme perfekt, noe som legger sterke begrensninger på oppskytningstidspunktet. Atlantis hadde tre sjanser til å nå Columbia innen dødlinjen: med oppskytning 9., 10. eller 11. februar ville man ha nådd fram til de nødstedte astronautene før eller på den 13. februar. Deretter ville en komplisert rom-ballett ha utspilt seg noen hundre kilometer over hodene våre.

Etter ha parkert rundt seks meter fra Columbia, ville to astronauter fra Atlantis ha fløyet over til naboskipet, medbringende to romdrakter pluss CO2-rensefiltre. I luftslusen på Columbia ville to astronauter hatt på seg romdrakt, klare til å hjelpes gjennom rommmet til luftslusen på Atlantis. Mens de ventet på at de reddede Columbia-astronautene tok av seg romdraktene sine, ville Atlantis-astronautene sjekke ut sitt eget romskip for samme type skade som Columbia (problemet med isolasjonsmateriale som traff fergen under oppskytning var jo på dette tidspunktet ikke løst)

I løpet av de neste åtte-ni timene ville Atlantis-astronautene bistå sine kolleger med å ta av og på romdrakter, og frakte kolleger til redning og tomme romdrakter motsatt vei. Den siste astronauten til å forlate Columbia ville ha stå overfor problemet med å ta på seg romdrakt uten hjelp av en kollega uten romdrakt, noe NASA-eksperter Ars Technica har snakket med karakteriserer som svært vanskelig.

På dette tidspunktet ville Columbia være klargjort for fjernstyring fra Jorda. Det var ikke mulig å lande en romferge via fjernstyring, blant annet fordi hjulene bare kunne senkes før landing ved å trykke på en knapp i førerkabinen. Istedenfor ville kontrollsenteret på bakken ha funnet et passende åsted for en kontrollert ødeleggelse av Columbia – sannsynligvis Stillehavet. Det rekordstore mannskapet i Atlantis – 11 i tallet – ville på sin side ha landet trygt på bakken noen dager senere, til den mest ekstatiske mottakelsen siden Apollo 13.

NASAs største nederlag siden Challenger-ulykken kunne altså ha blitt organisasjonens største triumf gjennom tidene – “their finest hour”. Om ikke romfergeprogrammet hadde overlevd frem til nå, ville presset for å bevare NASAs sentrale rolle i det bemannede romprogrammet ha vært mye større. Det hadde vært mindre politisk opportunt for Obama å dumpe Orion-prosjektet og overlate bemannet romfart til private, slik han gjorde i 2010.

NASA ville ha bevist at organisasjonen fremdeles hadde “The Right Stuff” – den udefinerbare kvaliteten som i  sin tid gjorde det mulig å landsette mennesker trygt på Månen. Og det bringer meg til poenget med dagens lille kontrafaktiske øvelse. Det er ikke at NASA en gyllen anledning gå fra seg. Det gjorde de ikke: sannsynligheten for at Atlantis kunne ha reddet Columbia-mannskapet var liten.

Poenget er at NASA tross klare indikasjoner ikke engang prøvde å fastslå om noe var gått galt, og siden har forsvart seg med at det uansett var umulig redde astronautene. Man kan virkelig spørre seg om mannskapet på Apollo 13 hadde overlevd om ulykken hadde funnet sted idag.

Dessverre er det lite håp om at de kommersielle aktørene som nå prøver seg på bemannet romfart vil vise større mot. Mens en statsstøttet organisasjon som i stor grad benytter seg at tidligere militært personell kan tåle et visst tap av mannskap, er det annerledes når du er avhengig av betalende kunder. Som Virgin Galactic-eier Richard Branson nylig sa til The Guardian

“For a government-owned company, you can just about get away with losing 3 per cent of your clients. For a private company you can’t really lose anybody.”

Han har selvsagt fullstendig rett. Romturisme er et felt som bare venter på å bli advokatmat, og bakom synger aksjonærene. “To Boldly Go Where No Man Has Gone Before”, du lissom.

 

 

Neil Armstrong 1930-2012

I dagene som kommer vil det skrives mye godt og innsiktsfullt om kjempen som nettopp er gått bort. Jeg velger å publisere en artikkel jeg skrev for Verdens Gang 11. mars 2006, da Neil Armstrong besøkte Oslo – og jeg fikk oppleve mannen på nært hold for første og siste gang.

 

Det er nesten pinlig å innrømme det, men jeg husker ikke det jeg selv mener er historiens viktigste øyeblikk. Heldigvis minnes min mor det som det var igår: det var sent på natten 20. juli 1969, og jeg var oppe lenge etter leggetid for en pjokk på knappe fem. I likhet med de fleste som hadde TV på den tiden, glodde jeg på en liten svarthvitt-skjerm, hvor en mann hoppet ned fra en stige og sa noen bevingede ord mellom mye piping og spraking.

Jeg forsto ikke hva han sa, men foreldrene mine skjønte at hendelsen hadde forandret sønnen deres. Etter Apollo 11 begynte jeg å fylle tegneark med romskip og planeter, og snakket ustanselig om universet på underlige måter. Verdensrommet var ikke lenger et svart og uhyggelig tomrom, men et sted jeg regnet med å besøke en gang. Uten å vite det var jeg blitt en av Apollo-generasjonen.

Og så sitter jeg der en kald novemberdag i Oslo, 37 år senere, og venter på at Neil Armstrong skal komme ut på scenen. For første gang skal jeg se min barndoms store helt, vår tids Columbus, og likevel prøver jeg å ikke for høye forventninger. For jeg har hørt at Armstrong er en beskjeden type, at han var NASAs førstevalg til det farlige månefartøyet nettopp fordi han utstyrt med lite ego og stabilt temperament.

Men når Neil Armstrong endelig kommer ut og går bort til podiet, tar følelsene overhånd. Den hvithårete, bestefarsaktige mannen med stålbriller er kanskje ikke en du ville ha lagt merke til på gaten, men jeg får gåsehud på ryggen og må kjempe med klumpen i halsen.

Det er ikke mulig å skille mannen fra livet han har levd. Når Armstrong snakker om hvor viktig det er å trosse risiko for nå sine mål, er det selvsagt ikke unike tanker. Men ordene får en egen klang når de kommer fra en mann som ikke ga seg selv særlig mer enn 50 % sjanse for en vellykket landing, og som visste at det å mislykkes i verdensrommet ofte er jevngodt med den visse død.

Jeg har lest utallige skildringer av det døde månelandskapet, så grått at det ofte bare er emblemene på astronautdraktene som avslører at bildene ikke er tatt med svart-hvitt-film. Men det er når Neil Armstrong forteller at månestøvet lukter som en våt peis, at det treffer meg som et knyttneveslag i magen: Månen er et sted, for svingende, og denne mannen har vært der!

Når det hele er over, sitter jeg igjen med blandete følelser. Glede og lettelse over å ha sett et aldrende idol mens han ennå var ved god helse, og samtidig en sterk følelse av vemod. For jeg kan ikke fri meg fra tanken på alt vi mistet da Apollo-prosjektet ble skrinlagt i 1972. For meg er det et kroneksempel på at utviklingen ikke går jevnt fremover. Det Armstrong, Aldrin og Collins gjorde i 1969 kunne vi ikke gjøre idag, uansett hvor mye vi måtte ønske det.

Kjemperaketten Saturn V, kommandoseksjonen og månelandingsfartøyet finnes på museum, men menneskene som visste hvordan man bygger og driver slike maskiner er forlengst pensjonert eller gått bort. Og kanskje mangler vi også viljen. Det er vanskelig å for seg at John F. Kennedys berømte “månetale” ville få samme gjenklang hos ironigenerasjonen, som den fikk i sin samtid. Selvrealisering og selvoppofrelse går ofte dårlig sammen, og man kommer ikke til planetene uten sistnevnte.

Derfor våger jeg ikke helt å tro på NASAs nye måneprosjekt, som etter planen skal ta USA tilbake til Månen om en 15 års tid. Når jeg ser konsepttegninger av romfartøy som til forveksling ligner Apollo, tenker jeg at vi burde vært på Mars nå, og kanskje underveis til Jupiter. Isteden er vi her og gjenoppfinner teknologi fra 1960-tallet.

Selvsagt forstår jeg de politiske årsakene til at det gikk som det gikk. Apollo-prosjektet kostet titalls milliarder dollar, og verden har nok av oppgaver som står i kø. På den annen side: romfarten koster en liten brøkdel av det som årlig brukes på våpen eller for den saks skyld godteri, og den har positive ringvirkninger vi sjelden tenker på.

Neil Armstrong pekte på at “romkappløpet” mellom USA og Sovjet fungerte som en avledningsmanøver – de to supermaktene brukte så mye ressurser på kappestrid i rommet at de ikke fikk tid til å krige med hverandre. I mine øyne var han alt for beskjeden. Apollo-prosjektet inspirerte millioner av mennesker verden over, og lot oss for første gang se hvor liten og sårbar vår klode er. Vi har ikke noe tilsvarende i vår tid. Ta én titt på vår verden, og fortell meg at den ikke trenger mange flere som Neil Armstrong.

Hvil i fred, Neil Armstrong. En dag kommer vi til å reise tilbake og besøke stedet du måtte forlate så altfor hastig.

2030: Elon Musk blir det første mennesket på Mars

Blant romfartskjennere som uttaler seg til offentligheten i Norge har jeg lenge vært relativt alene med mitt synspunkt om viktigheten av kommersiell, bemannet romfart. Et eksempel på dette finner vi i denne NRK-saken i forbindelse med Gagarin-jubileet forleden, der jeg er den eneste som i det hele tatt nevner dette aspektet ved romfarten som viktig i fremtiden. Erik Tandberg oppsummerer på mange måter konsensus når han svarer slik på spørsmålet om hva som blir viktigst i romfarten det neste halve århundret:

Det er vanskelig å si. Jeg tror nok det blir en bemannet romferd til Mars. Både USA, Russland, Kina og Europa har uttrykt at dette er det neste store målet. Jeg tipper noen klarer det rundt år 2035, og at det blir USA eller Kina som får æren av å gjøre det.

Implisitt i dette svaret ligger det at det er et av disse landenes regjeringer som står bak den første Mars-ferden. Kanskje er det arbeidet med fremtidstenkning som gir meg et annet perspektiv, men jeg holder på at på at et private alternativ blir stadig mer aktuelt. Som jeg sier i den samme NRK-saken:

Utviklingen av kommersiell, bemannet romfart som ikke bare muliggjør romturisme til lav jordbane, men også lengre ferder. Det jobbes nå med private bæreraketter som i prinsippet gjør f.eks. måneferder mulige for en liten brøkdel av Apollo-prisen.

Og hvis min magefølelse her er riktig, er det absolutt ikke utenkelig at det blir en som er født i Sør-Afrika som først stiger ut på den røde planet. Nærmere bestemt Elon Musk, den driftige gründeren bak PayPal.com, elbilselskapet Tesla Motors og det private romselskapet SpaceX. De viktigste årsakene finnes under det nedenstående bildet av Musk.

Elon Musk (kilde: Wikipedia)

SpaceX, eller Space Exploration Technologies Corp., har som navnet antyder utforsking av rommet som et hovedmål. Selskapet har allerede kontrakt med NASA om å utvikle en bærerakett og et romfartøy som om få år skal transportere forsyner og mennesker til romstasjonen. Dragon-romfartøyet ble testet med godt resultat ifjor, og vil være klart til å frakte astronauter til romstasjoner i løpet av få år. Som denne videoen fra SpaceX viser, ser man for seg at fremtidens Dragon-kapsler kan legge ut på interplanetariske ferder til f.eks. Mars.

I denne ukens VG Helg (kun på papir) skriver jeg om SpaceX’ nye bærerakett Falcon Heavy, som etter planen skal tas i bruk om tre-fire år. Med en løftekapasitet på 50 tonn til lav jordbane, er dette den kraftigste bæreraketten vi har sett siden Apollo-programmets Saturn V (som kunne løfte 120 tonn opp i rommet). Musk og SpaceX understreker at Falcon Heavy kan brukes til langt mer enn å frakte mange satellitter opp på én gang – med en stykkpris på 80-120 millioner dollar kan raketten blant annet gjøre en ferd rundt Månen mulig for godt under 1% av Apollos utviklingskostnader.

Noen innovative SpaceX-konsepter sammenlignet med Saturn V (til venstre)

Mye tyder på det vil finnes villige betalere for en slik ferd. Dagens superrike romturister betaler gjerne 20-30 millioner dollar for en romferd med et aldrende russisk Sojuz-fartøy. For noenlunde samme pris per hode kan et team på fire romturister gjenta Apollo 8-ferden om et tiår eller to. Den som er villig til å betale det tidobbelte for å havne i historiebøkene, kan slå seg sammen med tre-fire andre med like dype lommebøker og komme seg til Mars med dagens Falcon Heavy-priser. Om SpaceX’ gjør alvor av å utvikle en superkraftig løfterakett og kanskje til og med gjenopplive NASAs atomrakettprosjekt NERVA, kan prisen reduseres ytterligere.

For øyeblikket er SpaceX’ viktigste inntektskilde kontrakter med USAs regjering via NASA. I prinsippet er det derfor intet i veien for at USAs regjering stiller seg først i køen av Falcon Heavy-kjøpere. Målet om å ha en amerikaner i bane rundt Månen (om ikke på overflaten) innen 50-årsjubileet i 2019 kan faktisk nås på denne måten. Men kombinasjonen av økonomisk krise, budsjettunderskudd, et betent politisk klima og et byråkratisk NASA som vil bruke lang tid på omstille seg fra romferge-tidsalderen taler imot at Obama vil snu på flisa og “gjøre en Kennedy”.

Tross alt pratet om å en gjenoppliving av det russiske romprogrammet, taler økonomi, politikk og demografi for at Russland mangler kapasitet til å sende mennesker til Månen, enn si Mars. Sannsynligvis er arbeidshesten Sojuz fremdeles i bruk om ti år. Kina har utvilsomt teknologien og pengene. Men så langt har utviklingstakten i det kinesiske romprogrammet vært svært treg, senest eksemplifisert ved erklæringen om å ha en romstasjon i bane i 2020 – 17 år etter den første bemannede oppskytningen.

Så mens russerne drømmer om gammel storhet, amerikanerne krangler om hvem som skal betale regningen og kineserne gjenoppfinner hjulet i lav jordbane, ligger det ytre rom åpent for innovative private aktører til (minst) 2030. I Elon Musks gründerperspektiv er dette lang tid. Til Wall Street Journal sier han at SpaceX kan plassere et menneske på Mars om ti år, og i et  intervju med The Guardian ifjor kaller han tjue år “en halv evighet”, og kliner til med følgende målsetning:

One of the long-term goals of SpaceX is, ultimately, to get the price of transporting people and product to Mars to be low enough and with a high enough reliability that if somebody wanted to sell all their belongings and move to a new planet and forge a new civilisation they could do so.

I samme intervju erklærer Musk også at han kunne tenke seg å pensjonere seg på Mars, et scenario jeg skildret i fjorårets juleutgave av VG Helg. Der så jeg for meg at de første menneskene på Mars var søkkrike pensjonister med enveisbillett, noe som vil redusere reisekostnadene kraftig. På ingen måte et nytt konsept, men for første gang begynner det å se realistisk ut.

Så til tittelen på denne bloggpostingen: i 2030 er Elon Musk 59 år, en helt grei alder for en gründer å trekke seg tilbake på. Å gjøre det på Mars vil være en høyst fortjent belønning for noe så sjeldent i våre dager som en genuin romfartsvisjonær.